Без математики невозможно представить современный мир. Без нее стала невозможной работа компьютеров, телевизоров, радио, невозможно было бы рассчитать конструкции зданий, мостов, самолетов, или набрать элементарную книгу, посчитать количество особей на данной территории или рассчитать траекторию миграции, ее отклонение, для стаи птиц, невозможной стала бы навигация, человек потерялся бы на своей собственной планете.
Математика дана человеку самой природой, она является не чем-то абстрактным, а настоящей реальностью. Человек прошел огромный путь от вопроса «сколько и как?» до вопроса «почему?» и на него успешно отвечает математика и ее математические модели.
Современная биология широко применяет математические и компьютерные методы. Без использования математических методов было бы невозможным выполнение таких глобальных проектов, как геном человека, расшифровка пространственной структуры сложных биомакромолекул, дистанционная диагностика, компьютерное моделирование новых эффективных лекарств («драг- дизайн»), планирование мероприятий по предотвращению распространения эпидемий, анализ экологических последствий работы промышленных объектов, биотехнологические производства и многое другое.
Бурное внедрение математических методов в биологические науки в последние десятилетия связано в первую очередь с развитием экспериментальных физико-химических методов биологических исследований. Рентгеноструктурный и спектроскопические (ЯМР, ЭПР) методы, анализ последовательности ДНК невозможны без математической обработки результатов эксперимента.
С другой стороны, применение математических методов способствовало пониманию законов, лежащих в основе многих биологических процессов. Среди них – свойства циклических колебаний численностей популяций, принцип конкурентного исключения Гаузе для конкурирующих видов, пороговая теорема в математической эпидемиологии, условия распространения нервного импульса, условия возникновения разного типа автоволновых процессов в активных тканях, в частности в сердечной мышце и многие другие.
В современной России работы по математическому моделированию в биологии проводятся в ряде научно-исследовательских институтов и ВУЗов. Одно из ведущих мест принадлежит научному центру в г. Пущино, где в 1972 г. был организован научный вычислительный центр РАН (Директор – А.М. Молчанов), который в 1992 г. получил статус Института математических проблем биологии РАН. Нынешний директор ИМПБ – В.Д.Лахно, который также является председателем Научного Совета РАН по математической биологии и биоинформатике. ИМПБ РАН является ведущим научным учреждением по данной проблеме и издает электронный журнал «Математическая биология и биоинформатика»
Работы по математическому моделированию биологических процессов ведутся также в других учреждениях Пущинского научного центра РАН: Институте биофизики клетки РАН.директор - чл.-корр. РАН Е.Е.Фесенко (в основном по молекулярно-динамическому и квантово-механическому моделированию процессов в биомакромолекулах) и Институте теоретической и экспериментальной биофизики РАН, директор – чл.-корр. РАНГ.Р.Иваницкий (моделирование процессов самоорганизации в активных средах, автоволновны в живых клетках и биополимерах ).
В научной школе академика Г. И Марчука активно развиваются методы моделирования применительно к медицине, в частности, разрабатываются модели иммунитета и распространения эпидемий.
Исследования биологических систем с использованием математических моделей проводятся в Институте биофизики СО РАН (Красноярск, Институте генетики СО РАН (Новосибирск), в университетах Нижнего Новгорода, Саратова, Ростова-на-Дону, Ярославля, в Государственном университете «Московский физико-технический институт», в Национальном исследовательском ядерном университете «МИФИ» и др.
Работы по математическому моделированию в биологии в МГУ активно ведутся на Биологическом факультете (модели первичных процессов фотосинтеза и других процессов в субклеточных и клеточных системах, молекулярная динамика белков и биомембран), Физическом факультете МГУ (модели молекулярных машин), факультете Вычислительной математики и кибернетики (популяционная динамика, математическая экология, эволюционные модели, модели управления), Механико-математическом факультете (модели вестибулярного аппарата, модели растительных сообществ).
Биологические задачи инициировали создание новых математических теорий, которые обогатили саму математику.