1. Ballou C.E., Lipke P.N., Raschke W.C. 1974. Structure and immunochemistry of the cell wall mannans frоm Saccharomyces chevalieri, Saccharomyces italicus, Saccharomyces diastaticus, and Saccharomyces carlsbergensis. J Bacteriol 117: 461–467 (URL - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC285535/).
2. Bell M.W., Desai N., Guo X.X., Ghalayini A.J. Tyrosine phosphorylation of the alpha subunit of transducin and its association with Src in photoreceptor rod outer segments. J Neurochem. 2000 Nov;75(5):2006-19. (URL - https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1471-4159.2000.0752006.x).
3. Belli M., Ramazzotti M., Chiti F. Prediction of amyloid aggregation in vivo. EMBO Rep. 2011 Jul 1;12(7):657-63. (URL -https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3128957/)
4. Bi E., Park Н.О Cell polarization and cytokinesis in budding yeast. Genetics. 2012 Jun;191(2):347-87 (URL - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3374305/)
5. Briza P., Ellingerg A. et al., editors. Chemical composition of the yeast ascospore cell wall. The second outer layer consists of chitosan. J BiolChem. 1989 Aug 15;263(23):11569-74. (URL - http://www.jbc.org/content/263/23/11569.long)
6. Briza P., Ellinger А., Winkler G., Breitenbach М. Characterization of а DL-dityrosine-containing macromolecule frоm yeast ascospore walls. J BiolChem. 1990 Sep 5;265(25):15118-23. (URL -http://www.jbc.org/content/265/25/15118.long).
7. Briza P., Eckerstorfer М., Breitenbach М. The sporulation-specific enzymes encoded by the DIT1 and DIT2 genes catalyze a two-step reaction leading to a soluble LL-dityrosine-containing precursor of the yeast spore wall. Proc. Natl. Acad. Sci. USA. 1995 May 10; 91(10): 4524–4528. (URL - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC43818/).
8. Briza P, Kalchhauser H, et al., editors N,N'-Bisformyl dityrosine is an in vivo precursor of the yeast ascospore wall. Eur J Biochem. 1996 Jul 1;239(1):124-31. (URL - https://onlinelibrary.wiley.com/doi/full/10.1111/j.1432-1033.1996.0124u.x).
9. Cabib Е., Arroyo J. How carbohydrates sculpt cells: chemical control of morphogenesis in the yeast cell wall. Nat. Rev. Microbiol. 2014 Sep;11(9):648-55. (URL - https://www.nature.com/articles/nrmicro3090)
10. Carlile J.M., Gooday G.W., Watkinson S.C. 2001. The fungi. 2nd edn. Elsevier, London. ISBN13: 978-0-12-738446-7 2 (URL - https://ru.scribd.com/doc/153209512/The-Fungi-2nd-Ed-2001-M-Carlile-S-Watkinson-And-G-Gooday)
11. Carman G.M., Han G.S. Phosphatidic acid phosphatase, a key enzyme in the regulation of lipid synthesis. J BiolChem. 2009 Jan 30;284(5):2593-7. (URL - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2631973/).
12. Carman G.M., Henry S.А. Phospholipid biosynthesis in the yeast Saccharomyces cerevisiae and interrelationship with other metabolic processes. Prog Lipid Res. 1998 Sep-Nov;38(5-6):361-99. (URL - https://www.ncbi.nlm.nih.gov/pubmed/10793889/)
13. Chiti F., Dobson C.M. Protein Misfolding, Amyloid Formation, and Human Disease: A Summary of Progress Over the Last Decade. Annu Rev Biochem. 2017 Jun 20;86:27-68. (URL -https://www.annualreviews.org/doi/abs/10.1146/annurev.biochem.75.101304.123901?rfr_dat=cr_pub%3Dpubmed&url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org&journalCode=biochem).
14. Choi H.S., Su W.M. et al., editors. Phosphorylation of phosphatidate phosphatase regulates it membrane association and physiological functions in Saccharomyces cerevisiae: identification of SER (601), THR (723), AND SER (745) as the sites phosphorylated by CDC 28 (CDK-1)-encoded cyclin-dependent kinase. J BiolChem. 2011 Jan 14;286(2):1486-98 (URL - https://www.ncbi.nlm.nih.gov/pubmed/21081492/).
15. Christodoulidou А., Briza P., Ellinger А., Bouriotis V. Yeast ascospore wall assembly requires two chitin deacetylase isozymes. FEBS Lett. 1999 Oct 29;460(2):275-9. (URL - https://febs.onlinelibrary.wiley.com/doi/full/10.1016/S0014-5793%2899%2901334-4).
16. Coluccio A.E., Rodriguez R.K., Kernan M.J., Neiman A.M. The yeast spore wall enables spores to survive passage through the digestive tract of Drosophila. PLoS One. 2008 Aug 6;3(8):e2873. doi: 10.1371/journal.pone.0002873. (URL - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2478712/).
17. Coluccio A., Bogengruber E. et al., editors. Morphogenetic pathway of spore wall assembly in Saccharomyces cerevisiae. Eukaryot Cell. 2004 Dec;3(6):1464-75. (URL - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC539034/)
18. Corinna C., Vladimir M. New Potential Cell Wall Glucanases of Saccharomyces cerevisiae and Their Involvement in Mating. J Bacteriol. 1999 Oct; 180(19): 5030–5037. (URL -https://www.ncbi.nlm.nih.gov/pmc/articles/PMC107536/).
19. Dawes I.W., Hardie I.D. Selective killing of vegetative cells in sporulated yeast cultures by exposure to diethyl ether. Mol Gen Genet. 1974;131(4):281-9. (URL - https://link.springer.com/article/10.1007/BF00264859).
20. Dohlman H.G., Thorner J.W. Regulation of G protein-initiated signal transduction in yeast: paradigms and principles. Annu Rev Biochem. 2001; 70:704-52. (URL - https://www.annualreviews.org/doi/full/10.1146/annurev.biochem.70.1.703?url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org&rfr_dat=cr_pub%3Dpubmed).
21. Eisenman H.C., Casadevall A. Synthesis and assembly of fungal melanin. Appl Microbiol Biotechnol. 2012 Feb;93(3):931-40. doi: 10.1007/s00253-011-3777-2. Epub 2011 Dec 16. (URL -https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4318813/).
22. Fakas S., Qiu Y. et al., editors. Phosphatidate phosphatase activity plays key role in protection against fatty acid-induced toxicity in yeast. J BiolChem. 2011 Aug 19;286(33):29074-85 (URL - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3190715/).
23. Fowler D.M., Koulov A.V. Functional amyloid formation within mammalian tissue. PLoS Biol. 2006 Jan;4(1):e6. (URL -https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1288039/).
24. Garcia-Mata R., Boulter Е., Burridge К. The «invisible hand»: regulation of RHO GTPases by RHOGDIs. Nat. Rev. Mol. Cell Biol. 2011 Jul 22;12(8):493-504. (URL - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3260518/).
25. Gebbink M.F., Claessen D. et al., editors. Amyloids - a functional coat for microorganisms. Nat. Rev. Microbiol. 2005 Apr;3(4):333-41. (URL -https://www.nature.com/articles/nrmicro1127).
26. Gilman A.G. G proteins: transducers of receptor-generated signals. Annu Rev Biochem. 1987;56:615-49. (URL - https://www.annualreviews.org/doi/abs/10.1146/annurev.bi.56.070187.003151).
27. Goldman R.C., Sullivan P.А., Zakula D., Capobianco J.О. Kinetics of beta-1, 3 glucan interaction at the donor and acceptor sites of the fungal glucosyltransferase encoded by the BGL-2 gene. Eur. J Biochem. 1996 Jan 15;227(1-2):372-8. (URL - https://www.ncbi.nlm.nih.gov/pubmed/7851411/).
28. Harold F.M. Force and compliance: rethinking morphogenesis in walled cells. Fungal Genet Biol. 2002 Dec;37(3):271-82. (URL - https://linkinghub.elsevier.com/retrieve/pii/S1087184502005285).
29. Harold F.M. Molecules into cells: specifying spatial architecture. Microbiol Mol Biol Rev. 2005 Dec;69(4):544-64. (URL - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1306800/).
30. Han G.S., Wu W.I., Carman G.M. The Saccharomyces cerevisiae Lipin homolog is a Mg2+-dependent phosphatidate phosphatase enzyme. J Biol Chem. 2006 Apr 7;281(14):9210-8. Epub 2006 Feb 8. (URL - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1424669/).
31. Haruo S., Francesc P. Response to Hyperosmotic Stress. Genetics. 2012 Oct; 192(2): 289–318. (URL - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3454867/).
32. Hong S.P., Carlson M. Regulation of snf1 protein kinase in response to environmental stress. J Biol Chem. 2007 Jun 8;282(23):16838-45. Epub 2007 Apr 16. (URL - http://www.jbc.org/content/282/23/16838.long).
33. Isom D.G., Sridharan V. et al., editors. Protons as second messenger regulators of G protein signaling. Mol Cell. 2013 Aug 22;51(4):531-8 (URL - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3770139/).
34. Kaffman A., Herskowitz . Phosphorylation of the transcription factor PHO4 by a cyclin-CDK complex, PHO80-PHO85. Science. 1994 Feb 25;263(5150):1153-6 (URL -http://science.sciencemag.org/content/263/5150/1153.long).
35. Kalebina T.S., Farkas V. et al., editors. Deletion of BGL2 results in an increased chitin level in the cell wall of Saccharomyces cerevisiae. Antonie Van Leeuwenhoek. 2003;84(3):179-84. (URL - https://www.ncbi.nlm.nih.gov/pubmed/14574112/).
36. Kalebina T.S., Plotnikova T.A. et al., editors. Amyloid-like properties of Saccharomyces cerevisiae cell wall glucantransferase Bgl2p: prediction and experimental evidences. Prion. 2008 Apr-Jun;2(2):91-6. Epub 2008 Apr 18 (URL - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2634524/).
37. Kalebina T.S., Plotnikova T.A. Amyloid-like properties of Saccharomyces cerevisiae cell wall glucantransferase Bgl2p: prediction and experimental evidences. Prion. 2008 Apr-Jun;2(2):91-6. Epub 2008 Apr 18. (URL -https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2634524/).
38. Kalebina T.S., Laurinavichiute D.K. et al., editors. Correct GPI-anchor synthesis is required for the incorporation of endoglucanase/glucanosyltransferase Bgl2p into the Saccharomyces cerevisiae cell wall. FEMS Microbiol Lett. 2002 Apr 23;210(1):81-5. (URL -https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1574-6968.2002.tb11163.x).
39. Karanasios E., Han G.S. A phosphorylation-regulated amphipathic helix controls the membrane translocation and function of the yeast phosphatidate phosphatase. Proc Natl Acad Sci U S A. 2010 Oct 12;107(41):17539-44. (URL - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2955120/).
40. Klis F.M, Ram A.F, De Groot P.W. 2007. A molecular and genomic view of the fungal cell wall. In Biology of the fungal cell (ed. Howard RJ, Gow NAR.), 2nd ed, The Mycota VIII, pp. 97–120. Springer-Verlag, Berlin (URL - https://link.springer.com/chapter/10.1007/978-3-540-70618-2_4).
41. Levin D.E. Regulation of cell wall biogenesis in Saccharomyces cerevisiae: the cell wall integrity signaling pathway. Genetics. 2011 Dec;189(4):1145-75 (URL - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3241422/).
42. Li X., Gerber S.A. Large-scale phosphorylation analysis of alpha-factor-arrested Saccharomyces cerevisiae. J Proteome Res. 2007 Mar;6(3):1190-7 (URL - https://pubs.acs.org/doi/abs/10.1021/pr060559j).
43. Lin C.P., Kim C., Smith S.O., Neiman A.M. A highly redundant gene network controls assembly of the outer spore wall in S. cerevisiae. PLoS Genet. 2013;9(8):e1003700. doi: 10.1371/journal.pgen.1003700. Epub 2013 Aug 15 (URL - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3744438/).
44. Lynn R.R., Magee P.T. Development of the spore wall during ascospore formation in Saccharomyces cerevisiae. J Cell Biol. 1970 Mar;44(3):688-92. (URL - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2107973/)
45. Mah A.S., Elia A.E. et al., editors. Substrate specificity analysis of protein kinase complex Dbf2-Mob1 by peptide library and proteome array screening. BMC Biochem. 2005 Oct 21;6:22. (URL - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1277818/).
46. Mouyna I., Fontaine T., et al., editors. Glycosylphosphatidylinositol-anchored glucanosyltransferases play an active role in the biosynthesis of the fungal cell wall. J Biol Chem. 2000 May 19;275(20):14882-9. (URL - http://www.jbc.org/content/275/20/14882.long)
47. Mrsa V., Klebl F., Tanner W. Purification and characterization of the Saccharomyces cerevisiae BGL2 gene product, a cell wall endo-beta-1,3-glucanase. J Bacteriol. 1993 Apr;175(7):2102-6. (URL - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC204315/).
48. Muthukumar G., Suhng S. H. The Saccharomyces cerevisiae SPR1 gene encodes a sporulation-specific exo-1,3-beta-glucanase which contributes to ascospore thermoresistance. J Bacteriol. 1993 Jan; 175(2): 386–394. (URL - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC196152/).
49. Neiman. A.M. Sporulation in the Budding Yeast Saccharomyces cerevisiae. Genetics. 2011 Nov; 189(3): 737–765. doi: 10.1534/genetics.111.127126 (URL - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3213374/)
50. O'Hara L., Han G.S. et al., editors. Control of phospholipid synthesis by phosphorylation of the yeast lipin Pah1p/Smp2p Mg2+-dependent phosphatidate phosphatase. J Biol Chem. 2006 Nov 10;281(45):34537-48 (URL - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1769310/).
51. Oldham W.M., Hamm H.E. Heterotrimeric G protein activation by G-protein-coupled receptors. Nat Rev Mol Cell Biol. 2008 Jan;9(1):60-71. (URL - https://www.nature.com/articles/nrm2299).
52. O'Neill E.M., Kaffman A., Jolly E.R., O'Shea E.K. Regulation of PHO4 nuclear localization by the PHO80-PHO85 cyclin-CDK complex. Science. 1996 Jan 12;271(5246):209-12. (URL -http://science.sciencemag.org/content/271/5246/209.long).
53. Philip B., Levin D.E. Wsc1 and Mid2 are cell surface sensors for cell wall integrity signaling that act through Rom2, a guanine nucleotide exchange factor for Rho1. Mol Cell Biol. 2001 Jan;21(1):271-80. (URL - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC88800/).
54. Shellhammer J.P., Morin-Kensicki E. et al., editors. Amino acid metabolites that regulate G protein signaling during osmotic stress. PLoS Genet. 2017 May 30;13(5): e1006829. (URL - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5469498/).
55. Suda Y., Rodriguez R.K., Coluccio A.E., Neiman A.M. A screen for spore wall permeability mutants identifies a secreted protease required for proper spore wall assembly. PLoS One. 2009 Sep 25;4(9): e7184 (URL - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2743993/).
56. Trahey M., McCormick F. A cytoplasmic protein stimulates normal N-ras p21 GTPase, but does not affect oncogenic mutants. Science. 1987 Oct 23;238(4826):542-5. (URL - http://science.sciencemag.org/content/238/4826/542.long)
57. Uesono Y., Tanaka K., Toh-e A. Negative regulators of the PHO system in Saccharomyces cerevisiae: isolation and structural characterization of PHO85. Nucleic Acids Res. 1987 Dec 23;15(24):10299-309. (URL -https://www.ncbi.nlm.nih.gov/pmc/articles/PMC339945/).
58. Varki A, Cummings R.D, Esko J.D, et al., editors. Essentials of Glycobiology, Third Edition. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 2015-2017. (URL-https://www.ncbi.nlm.nih.gov/books/NBK453019/)
59. Verna J., Lodder A. et al., editors. A family of genes required for maintenance of cell wall integrity and for the stress response in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13804-9 (URL - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC28388/).
60. Westermark P., Benson M.D. A primer of amyloid nomenclature. Amyloid. 2007 Sep;14(3):179-83. (URL -https://www.tandfonline.com/doi/abs/10.1080/13506120701460923?journalCode=iamy20).
61. Wetzker R., Böhmer F.D. Transactivation joins multiple tracks to the ERK/MAPK cascade. Nat Rev Mol Cell Biol. 2003 Aug;4(8):651-7. (URL - https://www.nature.com/articles/nrm1173).
62. Wu W.I., Liu Y., et al., editors. Purification and characterization of diacylglycerol pyrophosphate phosphatase frоm Saccharomyces cerevisiae. J Biol Chem. 1996 Jan 26;271(4):1868-76. (URL - http://www.jbc.org/content/264/15/8641.long)
63. Wu W.I., Carman G.M. Regulation of phosphatidate phosphatase activity frоm the yeast Saccharomyces cerevisiae by phospholipids. Biochemistry. 1996 Mar 26;35(12):3790-6. (URL - https://pubs.acs.org/doi/abs/10.1021/bi952808f)
64. Xu S., Zhang G.Y. et al., editors. Effects of Rho1, a small GTPase on the production of recombinant glycoproteins in Saccharomyces cerevisiae. Microb Cell Fact. 2016 Oct 21;15(1):179. (URL - https://www.ncbi.nlm.nih.gov/pubmed/27769287)
65. Yang S., Rosenwald A. A High Copy Suppressor Screen for Autophagy Defects in Saccharomyces arl1Δ and ypt6Δ Strains. G3 (Bethesda). 2017 Feb 9;7(2):333-341. (URL - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5295583/)
66. Ying Z.X., Jin M. ., et al., editors. Recurrent Mutations in the MTOR Regulator RRAGC in Follicular Lymphoma. Clin Cancer Res. 2016 Nov 1;22(21):5383-5393. Epub 2016 Jun 7. (URL - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5093058/)
67. Zhu J., Zhu X., et al., editors. GOLGI TRANSPORT 1B Regulates Protein Export frоm the Endoplasmic Reticulum in Rice Endosperm Cells. Plant Cell. 2016 Nov;28(11):2850-2865. Epub 2016 Nov 1 (URL - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5155349/)